487 research outputs found

    Center Planning and Development Student Engineer

    Get PDF
    This fall I was the Student Trainee (Engineering) Pathways Intern (co-op) at the Kennedy Space Center (KSC) in the Center Planning Development (CPD) Directorate. CPD works with commercial companies who are interested using KSCs unique capabilities in spaceflight, spacecraft processing, ground systems and Research Development (RD) projects that fall in line with NASAs mission and goals. CPD is divided into four (4) groups: (1) AD-A, which works on the Master Planning for center, (2) AD-B (where I am), which works on project management and integration, (3) AD-C, which works on partnership development, and (4) AD-T, which works on the RD aspects of partnerships. CPDs main goal is to one day make KSC the worlds largest spaceport and maintain the center as a leader in space exploration. CPD is a very diverse group with employees having a wide knowledge of not only the Space Shuttle, but also that of the Apollo era. Our director of CPD, Scott Colloredo, is on the advisory board for Commercial Space Operations (CSO) and has a degree at ERAU. I worked on a number of different tasks for AD-B, as well as CPD, that includes, but not limited to: reviewing and reissuing engineering drawings from the Apollo and Shuttle eras, to supporting NASA rocket launches (MAVEN), and working on actual agreementsproposals that will be used in the partnership process with multiple partners. Most of the work I have done is sensitive information and cannot be disclosed

    Center Planning and Development Student Engineer at KSC

    Get PDF
    This summer I was the Student Trainee (Engineering) Pathways Intern (co-op) at the Kennedy Space Center (KSC) in the Center Planning & Development (CPD) Directorate. CPD works with commercial companies who are interested in using KSC's unique capabilities for spaceflight, spacecraft processing, ground systems and Research & Development (R&D) projects that fall in line with NASA's Mission and Vision. CPD is divided into three (3) groups: (1) AD-A, which works on the Master Planning for the center, (2) AD-B (where I am), which works on project control, management and integration, and (3) AD-C, which works on partnership development. CPD's main goal is to make KSC the world's preeminent multi-user spaceport and maintain the center as a leader in space exploration. CPD is a very diverse group of employees having a wide knowledge of not only the Space Shuttle, but also Expendable Launch Vehicles (ELV). The director of CPD, Scott Colloredo, is on the advisory board for Commercial Space Operations (CSO) and has a degree from ERAU. I worked on a number of different tasks for AD-B, as well as CPD, that includes, but not limited to: reviewing and reissuing engineering documents, weekly notes for CPD and senior management, engineering familiarizations with facilities at KSC, leading a tour for the Embry-Riddle Aeronautical University Career Services office, and working on actual agreements/proposals that will be used in the partnership process with multiple partners, along with other projects. Most of the work I have done is sensitive information and cannot be disclosed

    Absorption-Line Systems and Galaxies in Front of the Second Brightest Quasar, PHL 1811

    Full text link
    The extraordinarily bright quasar PHL 1811 at a redshift z = 0.192 provides an attractive opportunity to use ultraviolet absorption-line spectroscopy to study the properties of gas systems in the local universe. An R = 20,000 far-UV spectrum recorded by FUSE revealed 7 extragalactic absorption systems, one of which is a Lyman limit system at z = 0.08093 accompanied by three systems having redshifts which differ from it by less than 0.008. The abundance of O with respect to Fe in the Lyman limit system is not much different from the solar abundance ratio. Supplementary low resolution spectra recorded by STIS (on HST) at longer wavelengths helped to substantiate our identifications of systems in the FUSE spectrum and suggested the presence of an additional 4 systems that could be detected only through their Ly-alpha features. Spectroscopy at visible wavelengths of 7 galaxies within approximately 2' of PHL 1811 indicated that 2 of them are near the redshift of the quasar and 4 have redshifts within 850 km/s of the extragalactic absorption systems. The Lyman limit system is likely associated with an L* galaxy lying 23" from the sightline. Finally, in addition to prominent features at very low velocities arising from the disk of our Galaxy, the strong resonance transitions of C II and Mg II show evidence for material at v = -200 km/s; the column densities of these two species suggest that 17.7 < log N(H I) < 18.1 if the material has a solar composition.Comment: 47 pages, 5 figures, to appear in the June 2003 issue of the Astronomical Journa

    Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park

    Get PDF
    Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality

    The same frequency of planets inside and outside open clusters of stars

    Get PDF
    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.Comment: 18 pages, 6 figures, 1 table (main text + supplementary information

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice

    The Far Ultraviolet Spectroscopic Explorer Survey of OVI Absorption in the Disk of the Milky Way

    Full text link
    To probe the distribution and physical characteristics of interstellar gas at temperatures T ~ 3e5 K in the disk of the Milky Way, we have used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe absorption lines of OVI toward 148 early-type stars situated at distances 1 kpc. After subtracting off a mild excess of OVI arising from the Local Bubble, combining our new results with earlier surveys of OVI, and eliminating stars that show conspicuous localized X-ray emission, we find an average OVI mid-plane density n_0 = 1.3e-8 cm^-3. The density decreases away from the plane of the Galaxy in a way that is consistent with an exponential scale height of 3.2 kpc at negative latitudes or 4.6 kpc at positive latitudes. Average volume densities of OVI along different sight lines exhibit a dispersion of about 0.26 dex, irrespective of the distances to the target stars. This indicates that OVI does not arise in randomly situated clouds of a fixed size and density, but instead is distributed in regions that have a very broad range of column densities, with the more strongly absorbing clouds having a lower space density. Line widths and centroid velocities are much larger than those expected from differential Galactic rotation, but they are nevertheless correlated with distance and N(OVI), which reinforces our picture of a diverse population of hot plasma regions that are ubiquitous over the entire Galactic disk. The velocity extremes of the OVI profiles show a loose correlation with those of very strong lines of less ionized species, supporting a picture of a turbulent, multiphase medium churned by shock-heated gas from multiple supernova explosions.Comment: Accepted for publication in ApJS. Preprint with full resolution images and all 148 spectra available at http://www.astro.princeton.edu/~dvb/o
    corecore